
UNCLASSIFIED ' -'
SECURI'ty CLASSIFIC ATION OF THIS PAGE (WherDarjEntered) 4 1.

REPORT DOCUMENTATION PAGE I DoEA. VSTRVC',0oN.

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENI'S CATALOG NUMBER

4. TITLE (and Subtrie) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: TLD Syste s,3 Sept. 1.988 to 3 Sept. 1988
,td., TLD VAX/1750A Ada Compiler System, Version 1.3.0, 6. PERFORMINGbRG. REPORT NUMBER

licroVAX II and TLD 1750A Instruction Level Simulator
Host) and (Target), 880829WI.09156
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Wright-Patterson AFB

(0 Dayton, OH
?. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Wright-Patterson AFB AREA & WORK UNIT NUA4BERS

S Dayton, OH

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office
United States Department of Defense 1.'NuUL Ut FA6Ls
Washington, DC 20301-3081

14. MONITORING AGENCY NAME & ADDRESS(lf different from ControllingOffice) 15. SECURITY CLASS (of this report)
UNCLASSIFIED

Wright-Patterson AFB 1Sa. ASJFICATION/DOW%'RADING

Dayton, OH I 9Du N/A

18. DISTRIBUTION STATEMENT (ofth sReport)

Approved for public release; distribution unlimited.

DTIC
17. DISTRIBJTION STATEMENT (of the abirict entered in Block 20 if different from Repor) D T L %#ICr

UNCLASSIFIED s t 2 APR 1989 D
18. SUPPLEMENIARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

TLD Systems, Ltd., TLD VAX/1750A Ada Compiler System, Version 1.3.0, Wright-Patterson

AFB, MicroVAX II under MicroVMS, Version 4.7 (Host) to TLD 1750A Instruction Level

Simulator with TLD 1750A Single Program Kernel (Target), ACVC 1.9.

DD ,ul^ 1473 EDITION OF I NOV 65 IS OBSOLETE

I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECUR1TY CLASSIFICATION OF THIS PAGE (When Dare Entered)

89 03

AVF Control Number: AVP-VSR-211.1288
88-05-31-TLD

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 880829W1.09156
TLD Systems, Ltd.

TLD VAX/1750A Ada Compiler System, Version 1.3.0
MicroVAX II and TLD 1750A Instruction Level Simulator

Completion of On-Site Testing:
3 September 1988

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

Accession For

NTIS GRA&I
DTIC TAB
Unannounced
Justification

Distribut ion/

Availability Codes

Ava1. and/or
Dist Special

Ada Compiler Validation Summary Report:

Compiler Name: TLD VAX/1750A Ada Compiler System, Version 1.3.0

Certificate Number: 880829W1.09156

Host: Target:

MicroVAX II under TLD 1750A Instruction Level

MicroVMS, Version 4.7 Simulator with TLD 1750A
Single Program Kernel

Testing Completed 3 September 1988 Using ACVC 1.9

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Ada Validation Organization

Intitue FforDefense Analy/

Alexandria VA 22311

Ada Joint Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC 20301

2

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES__*I-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS o * * * . * 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . • 3-4
3.7 ADDITIONAL TESTING INFORMATION 3-5
3.7.1 Prevalidation 3-5
3.7.2 Test Method 3-5
3.7.3 Test Site 3-6

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

J
This Validation Summary Report \-VSRY describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of tqs ing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUCTION

1. 1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an

Ada compiler. Testing was carried out for the following purposes:

" To attempt to identify any language constructs supported by the

compiler that do not conform to the Ada Standard

" To attempt to identify any language constructs not supported by

the compiler but required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed

by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 3 September 1988 at Torrance, CA.

1.2 USE OF THIS 1ALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)

Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the

Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical

1-3

INTRODUCTION

support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.
Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

1-4

INTRODUCTION

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time-that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECKFILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and

1-5

INTRODUCTION

place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: TLD VAX/1750A Ada Compiler System, Version 1.3.0

ACVC Version: 1.9

Certificate Number: 880829W1.09156

Host Computer:

Machine: MicroVAX II

Operating System: MicroVMS,
Version 4.7

Memory Size: 16 Mbytes

Target Computer:

Machine: TLD 1750A Instruction Level
Simulator

Operating System: TLD 1750A Single Program
Kernel

Memory Size: 64K 16 bit words

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

Ore of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 6
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A..H (8
tests), D56001B, D64005E..G (3 tests), and D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64 bit integer calculations. (See tests
D4AOO2A, D4A002B, D4AQ04A, and D4AO04B.)

. Predefined types.

This implementation supports the additional predefined types
LONG INTEGER and LONG FLOAT in the package STANDARD. (See tests
B860"1C and B86001D.)

. Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERICERROR during execution. (See test
E24101A.)

. Expression evaluation.

Apparently some default initialization expressions for record
components are evaluated before any value is checked to belong to
a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

2-2

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision. This

implementation uses all extra bits for extra range. (See test
C35903A.)

No exception is raised when an integer literal operand in a
comparison or membership test is outside the range of the base
type. (See test C45232A.)

No exception is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base
type. (See test C45252A.)

Apparently underflow is gradual. (See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round away
from zero. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round away from zero. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round away from zero. (See test
C4AO1I4A.)

A.ray types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this

implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.MAX INT components raises NUMERICERROR. (See test
C36003A.)

CONSTRAINT ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C36202A.)

NUMERIC ERROR is raised when 'LENGTH is applied to an array type
with SYSTEM.MAXINT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises CONSTRAINTERROR when the array objects are declared. (See
test C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINT ERROR when the length of a dimension

is calculated and exceeds INTEGER'LAST. (See test C52104Y.)

2-3

CONFIGURATION INFORMATION

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERICERROR or CONSTRAINTERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises no exception. (See
test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression appears to be evaluated in its entirety before
CONSTRAINTERROR is raised when checking whether the expression's
subtype is compatible with the target's subtype. (See test
C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, index subtype
checks appear to be made as choices are evaluated. (See tests
C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

CONSTRAINT ERROR is raised before all choices are evaluated when a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

2-4

CONFIGURATION INFORMATION

For this implementation:

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See tests C35502I..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests C35507I..J,
C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are
supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types are
supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are not supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types are
supported. (See tests A390O5D and C87B62D.)

Length clauses with SMALL specifications are not supported. (See
tests A39005E and C87B62C.)

Record representation clauses are supported. (See test A39005G.)

Length clauses with SIZE specifications for derived integer types
are supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is not supported for procedures or functions.
(See tests LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and
CA3004F.)

Input/output.

The package SEQUENTIAL 10 can be instantiated wiLth unconstrained
array types and record types with discriminants without defaults.
However, when SEQUENTIAL_10 is instantiated with unconstrained
array types and record types with discriminants without defaults,
then each call to CREATE raises USEERROR. (See tests AE2101C,
EE2201D, and EE2201E.)

The package DIRECT 10 can be instantiated with unconstrained array
types and record types with discriminants without defaults.
However, when DIRECT 10 is instantiated with unconstrained array
types and record types with discriminants without defaults, then
each call to CREATE raises USEERROR. (See tests AE2101H,

2-5

CONFIGURATION INFORMATION

EE2401D, and EE2401G.)

The director, AJPO, has determined (AI-00332) that every call to
OPEN and CREATE must raise USE ERROR or NAMEERROR if file
input/output is not supported. This implementation exhibits this
behavior for SEQUENTIALIO, DIRECTIO, and TEXT IO.

Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in separate
compilations. (See test CA3011A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 27 tests had been withdrawn because of test errors. The AVF
determined that 500 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 285
executable tests that use floating-point precision exceeding that supported
by the implementation aid 174 executable tests that use file operations not
supported by the implementation. Modifications to the code, processing, or
grading for 6 tests were required to successfully demonstrate the test
objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 107 1048 1370 15 11 414 2595

Inapplicable 3 3 483 2 7 2 500

Withdrawn 3 2 21 0 1 0 27

TOTAL 113 1053 1874 17 19 46 3122

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 1I

Passed 184 468 490 245 164 98 140 327 131 36 234 3 75 2595

Inapplicable 20 104 184 3 2 0 3 0 6 0 0 0 178 500

Withdrawn 2 14 3 0 0 1 2 0 0 0 2 1 2 27

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A E28005C C34004A A35902C C35502P
C35904A C35904B C35A03E C35A03R C37213H
C37213J C37215C C37215E C37215G C37215H
C38102C C41402A C45332A C45614C A74106C
C85018B C87BO4B CC1311B BC3105A AD1AO1A
CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 500 tests were inapplicable for the
reasons indicated:

" C35702A uses SHORTFLOAT which is not supported by this
implementation.

" A39005C and C87B62B use length clauses with STORAGESIZE
specifications for access types which are not supported by this
implementation.

3-2

TEST INFORMATION

A39005E and C87B62C use length clauses with SMALL specifications
which are not supported by this implementation.

" The following tests use SHORTINTEGER, which is not supported by
this compiler:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55B09D

" C45231D requires a macro substitution for any predefined numeric
types other than INTEGER, SHORT INTEGER, LONGINTEGER, FLOAT,
SHORTFLOAT, and LONGFLOAT. This compiler does not support any
such types.

" C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

" C455310, C45531P, C455320, and C45532P use coarse 48-bit
fixed-point base types which are not supported by this compiler.

" D64005F and D64005G use nested procedures as subunits to a level
of 10 which exceeds the capacity of the compiler.

B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

CA3004E, EA3004C, and LA3004A use the INLINE pragma for
procedures, which is not supported by this compiler.

CA3004F, EA3004D, and LA3004B use the INLINE pragma for functions,
which is not supported by this compiler.

EE2201D and EE2201E use instantiations of package SEQUENTIAL 10
with unconstrained array types and record types having
discriminants without defaults. When CREATE is called, USEERROR
is raised.

EE2401D and EE2401G use instantiations of package DIRECTIO with
unconstrained array types and record types having discriminants
without defaults. When CREATE is called, USEERROR is raised.

3-3

TEST INFORMATION

The following 174 tests are inapplicable because sequential, text,
and direct access files are not supported:

CE2102C CE2102G..H(2) CE2102K CE2104A..D(4)
CE2105A..B(2) CE2106A..B(2) CE2107A..I(9) CE2108A..D(4)
CE2109A..C(3) CE2110A..C(3) CE2111A..E(5) CE2111G..H(2)
CE2115A..B(2) CE2201A..C(3) CE2201F..G(2) CE2204A..B(2)
CE2208B CE2210A CE2401A..C(3) CE2401E..F(2)
CE2404A CE2405B CE2406A CE2407A
CE2408A CE2409A CE2410A CE2I11A
AE3101A CE3102B EE3102C CE3103A
CE3104A CE3107A CE3108A..B(2) CE3109A
CE3110A CE3111A..E(5) CE3112A..B(2) CE3114A..B(2)
CE3115A CE3203A CE3301A..C(3) CE3302A
CE3305A CE3402A..D(4) CE3403A..C(3) CE3403E..F(2)
CE3404A..C(3) CE3405A..D(4) CE3406A..D(4) CE3407A..C(3)
CE3408A..C(3) CE3409A CE3409C..F(4) CE3410A
CE3410C..F(4) CE3411A CE3412A CE3413A
CE3413C CE3602A..D(4) CE3603A CE3604A
CE3605A..E(5) CE3606A..B(2) CE3704A..B(2) CE3704D..F(3)
CE3704M..0(3) CE3706D CE3706F CE3804A..E(5)
CE3804G CE3804I CE3804K CE3804M
CE3805A..B(2) CE3806A CE3806D..E(2) CE3905A..C(3)
CE3905L CE3906A..C(3) CE3906E..F(2)

Results of running a subset of these tests showed that the proper
exceptions are raised for unsupported file operations.

The following 285 tests require a floating-point accuracy that
exceeds the maximum of 9 digits supported by this implementation:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..Z (21 tests)
C45241F..Y (20 tests) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45521F..Z (21 tests)
C45524F..Z (21 tests) C45621F..Z (21 tests)
C45641F..Y (20 tests) C46012F..Z (21 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising

3-4

TEST INFORMATION

one exception instead of another).

Modifications were required for 6 Class B tests.

The following Class B tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B24009A B44004D B49003A
B49005A B59001A B59001E

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the TLD VAX/1750A Ada Compiler System, Version 1.3.0, was submitted to the
AVF by the applicant for review. Analysis of these results demonstrated
that the compiler successfully passed all applicable tests, and the
compiler exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the TLD VAX/1750A Ada Compiler System, Version 1.3.0, using ACVC
Version 1.9 was conducted on-site by a validation team from the AVF. The
configuration consisted of two MicroVAX II hosts operating under MicroVMS,
Version 4.7, with the TLD 1750A Instruction Level Simulator software as the
target operating under TLD 1750A Single Program Kernel.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions or file operations was
taken on-site by the validation team for processing. Tests that make use
of implementation-specific values were customized before being written to
the magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled and linked on the MicroVAX II, and all executable tests were
run on the host using the TLD 1750A Instruction Level Simulator. Results
were saved on magnetic tape and then loaded onto a Data General MV8000 for
printing.

The compiler was tested using command scripts provided by TLD Systems, Ltd.
and reviewed by the validation team. The compiler was tested using all
default switch ettings except for the following:

3-5

TEST INFORMATION

Switch Effect

/LOG Outputs filename to standard output.
/NOI Suppresses information messages.
/NOPHASETIME Suppresses phase time messages.

Tests were compiled and linked using two host computers, and executed (as
appropriate) using the TLD 1750A Instruction Level Simulator running on the
appropriate host computer. Test output, compilation listings, and job logs
were captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Torrance, CA and was completed on 3 September
1988.

3-6

APPENDIX A

DECLARATION OF CONFORMANCE

TLD Systems, Ltd. has submitted the following
Declaration of Conformance concerning the TLD VAX/1750A
Ada Compiler System, Version 1.3.0.

A-1

DECLARATION OF CONFORMANCE

Compiler Implementor: TLD Systems, Ltd.
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB, OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: TLD VAX/1750A Ada Compiler System Version: 1.3.0

Host Architecture ISA: MicroVAX II
OS&VER #: MicroVMS, Version 4.7

Target Architecture ISA: TLD 1750A Instruction Level Simulator
OS&VER #: TLD 1750A Single Program Kernel, Version: 1.3.0

Implementor's Declaration

I, the undersigned, representing TLD Systems, Ltd., have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the
compiler listed in this declaration. I declare that TLD Systems, Ltd. is the
owner of record of the Ada language compiler listed above and, as such, is
responsible for maintaining said compiler in conformance to
ANSI/MIL-STD-1815A. All certificates and registrations for the Ada language
compiler listed in this declaration shall be made only in the owner's

oprte

ms Date: 30 August 1988
T D Systems,'Ltd.
Terry L. Dunbar, President

Owner's Declaration

I, the undersigned, representing TLD Systems, Ltd., take full responsibility
for implementation and maintenance of the Ada compiler listed above, and agree
to the public disclosure of the final Validation Summary Report. I further
agree to continue to comply with the Ada trademark policy, as defined by the
Ada Joint Program Office. I declare that all of the Ada language compilers
listed, and their host/target performance are in compliance with the Ada
Language an ard ANSI/MIL-STD-1815A.

________-?I ________ Date: 30 August 1988
TLgSystems Ltd.
Terry L. Dunbar, President

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the TLD VAX/1750A Ada Compiler System, Version 1.3.0, are described in the
following sections, which discuss topics in Appendix F of the Ada Standard.
Implementation-specific portions of the package STANDARD are also included
in this appendix.

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONGINTEGER is range -1073741824 .. 1073741823;

type FLOAT is digits 6 range -1.0"2.00*127 .. 0.999999"2.0"'127;
type LONGFLOAT is digits 9 range -1.02.0"'127 .. 0.999999"2.0"'127;

type DURATION is delta 2.0"*(-12) range -86400.0 .. 86400.0;

end STANDARD;

B-I

The Ada language definition allows for certain machinedependencies in a
controlled manner. No machine-dependent syntax of semantic extensions or
restrictions are allowed. The only allowed implementation-dependencies
correspond to implementaton-dependent pragmas and attributes, certain
machine-dependent conventions as mentioned in chapter 13, and certain allowed
restrictions on representation clauses.

The full definition of the implementation-dependent characteristics of the TLD

VAX/1750A Ada Compiler System is presented in this Appendix F.

Implementaton-Dependent Pragmas

The TLD ACS supports pragma identifiers Interface, its logical complement,
Export; and source maintenance commands in the form of pragma syntax: If,
Elsif, Else, EndIf, and Include.

Pragma Export(Language, Name {, OptionalStringl});

This pragma is used to identify a static object name or procedure name that is
to be exposed to the linker for reference by object modules written in other
than the Ada Language. The third parameter is the name by which the Ada
entity named by the second parameter may be referenced rather than a name
assigned by the compiler. The only language supported at present is
Assembly. If the entity named is a subprogram, this pragma must be placed in
the declarative region of the subprogram. If the entity named is an Ada
object, this pragma must appear following the declaration of the object but
within the same declarative region as the object.

Pragma Include (FilePath_NameString);

This directive in the form of a language pragma is processed by the Ada
Compiler Front End to permit inclusion of another source file in place of the
pragma. This pragma may occur any place a language defined pragma, statement,
or declaration may occur. This directive is used to facilitate source program
portability and configurability.

Pragma If (CompileTime_Expression);
Pragma Elsif (Compile_T1meExpression);
Pragma Else;
Pragma Endif;

These source maintenance directives may be used to enclose conditionally
compiled source to enhance program portability and configuration adaptation.
These directives may occur at the place that language defined pragmas,
statements, or declarations may occur. Source occurring following these
pragmas will be compiled or ignored similar to the semantics of the
corresponding Ada statements depending upon whether the compile time

B-2

expression is true or false, respectively. The primary difference between
these directives and the corresponding Ada statements are that the directives
may enclose declarations and other pragmas.

Impleientation-Dependent Attributes

None.

Representation Clause Restrictions

Pragma Pack is not supported.

Length clauses are supported for 'size applied to objects other than task and
access type objects and denote the number of bits allocated to the object.

Length clauses are not supported for 'Storage..Size when applied to access
types.

Length clauses are supported for 'Storae_Size when applied to a task type and

denote the number of words of stack to be allocated to the task.

Length clauses are not supported for 'Small.

Enumeration representation clauses are supported for value ranges of
Integer'First to Integer'Last.

Record representation clauses are supported to arrange record components
within a record. Record components may not be specified to cross a word
boundary unless they are arranged to encompass two or more whole words. A
record component of type record that has itself been "rep specificationed" may
only be allocated at bit 0. Bits are numbered from left to right with bit 0
indicating the sign bit.

The alignment clause is not supported.

Address clauses are supported for both variable and constant objects and
designate the virtual address of the object. The TLD Ada Compiler System
treats the address specification as a means to access objects allocated by
other than Ada means and accordingly does not treat the clause as a request to
allocate the object at the indicated address.

Address clauses are not supported for packages, tasks, or task entries.

Implementation-Generated Names

The TLD Ada Compiler System defines no implementation dependent names for
compiler generated components.

B-3

Address Claue Expressions

Address expression values and type Address represent a location in logical
memory, (in the program's current address state). For objects, the address
specifies a location within the b4K word logical operand space. The 'Address
attribute applied to a subprogram represents a lb bit word address within the
logical instruction space.

Unchecked Conversion Restrictions

None

I/O Package Characteristics

The following implementation-defined types are declared in TextIo.

subtype Count is integer range 0 .. 511;

subtype Field is Integer range 0 .. 127;

Package Standard

The implementation-defined types of package Standard are:

type Integer is range -32_T68 .. 3Z_767;
type Long_Integer is range -I_073_74I_824 .. 1_073_741_823;
type Float is digits 6 range -1.0,2.0127 .. 0.99999902.0*127;
type LongFloat is digits 9 range--1.0'2.0"127 .. 0.999999*2.0''127;
type Duration is delta 2.0*(-12) range -86_400.0..86_400.O;

B-4

Other System Dependencies

LRM Chanter 1.

None.

LRM Chanter 2.

Maximum source line length -- 120 characters.

Source line terminator -- Determined by the Editor used.

Maximum name length -- 120 characters.

External representation of name characters.

Maximum String literal -- 120 characters.

LRM Chanter 3.

LRM defined pragmas are recognized and processed as follows:

C-- Has no effect.

E-- As described in the LRM.

J -- Not presently supported.

I a -- Supported as a means of importing foreign language
components into the Ada Program Library. May be applied either to a
subprogram declaration as being specially implemented, -- read Interface
as Import -- , or to an object that has been declared elsewhere.
Interface languages supported are System for producing a call obeying the
standard calling conventions except that the BEX instruction is used to
cause a software interrupt into the kernel supervisor mode; Assembly for
calling assembly language routines; and Mil-Std-1750A for defining built
in instruction procedures. An optional third parameter is used to define
a name other than the name of the Ada subprogram for interfacing with the
linker.

L -- As defined in the LRM.

M-- Has no effect.

Ontimima -- Has no effect. Optimization controlled by compiler command
option.

-- Has no effect.

-- As defined in the LRM.

P -- As defined in the LRM. Priority may range from 0 to 163b.
Default priority is 1.

B-5

Shared-- As defined in the LRM. May be applied to scalar objects only.

Soage Uni -- Has no effect.

S-- As defined in the LRM for suppressing checks; all standard
checks may be suppressed individually plus *Exception_Info" and
"All_Checks". Suppression of Exception-Info eliminates data used to
provide symbolic debug information in the event of an unhandled
exception. The AllChecks selection eliminates all checks with a single
pragma. In addition to the pragma, a compiler permits control of check
suppression by command line option without the necessity of source
changes.

System Name -- Has no effect.

Number declarations are not assigned addresses and their names are not
permitted as a prefix to the 'address attribute. (Clarification only).

Objects are allocated by the compiler to occupy one or more 16 bit 1750A
words. Only in the presence record representation clauses are objects
allocated to less than a word.

Except for access objects, uninitialized objects contain an undefined value.
An attempt to reference the value of an uninitialized object is not detected.

The maximum number of enumeration literals of all types is limited only by

available symbol table space.

The predefined integer types are:

Integer range -32-768 .. 32_767 and is implemented as a 1750A single
precision fixed point data.
Long_Integer range -1-073_741_824 .. 1-073_T41_823 and implemented as
1750A double precision data.
ShortInteger is not supported.

System.MinInt is -1_07L741_824. 7..,,,.8 1 + e ,I

System.MaxInt is 1-073_741_823. 9) vc\ues.

The predefined real types are:

Float digits 6.
LongFloat digits 9.
Shortj.Float is not presently supported.

System.NaxDigits is presently 9 and is implemented as 1750A 48-bit
floating point data.

Fixed point is implemented as 1750A single and double precision data as is
appropriate for the range and delta.

On the 1750A, index constraints as well as other address values such as access
types are limited to an unsigned range of 0 .. 65-536 or a signed range of
-32_768 .. 32_767.

B-6

The maximum array size is limited to the size of virtual memory -- 64K words.

The maximum String length is the same as for other arrays.

Access objects are implemented as an unsigned 16 bit 1750A integer. The
access literal Null is implementated as one word of zero on the 1750A.

There is no limit on the number of dimensions of an array type. Array types
are passed as parameters opposite unconstrained formal parameters using a 3
word dope vector illustrated below:

I Word address of first element I
I Low bound value of first dimension I
I Upper bound value of first dimension I

Additional dimension bounds follow immediately for arrays with more than one

dimension.

LRM Chapter 4.

HachineOverflows is True for the 1750A.

Pragma Controlled has no effect for the TLD VAX/1750A Compiler since garbage
collection is never performed.

LRM Chapter -S.

The maximum number of statements in an Ada source program is undefined and
limited only by Symbol Table space.

Case statements unless they are quite sparse, are allocated as indexed jump
vectors and are, therefore, quite fast.

Loop statements with a for implementation scheme are implemented most
efficiently on the 1750A if the range is in reverse and down to zero.

Data declared in block statements on the 1750A is elaborated as part of its

containing scope.

LPM Chapter 6.

Arrays, records and task types are passed on the 1750A by reference.

Pragma Inline is not presently supported for subprograms.

LRM Chanter 7.

Package elaboration is performed dynamically permitting a warm restart without
the necessity to reload the program.

B-7

LRH Chanter 8.

LRM Chanter g.

Task objects are implemented as access types pointing to a Task Information
Block (TIB).

Type Time in package Calendar is declared as a record containing two double

precision integer values: the date in days and the real time clock.

Pragma Priority is supported with a value of I to 16366.

Pragma Shared is supported for scalar objects.

LRM Chanter 10,

Multiple Ada Program Libraries are supported with each library containing an
optional ancester library. The predefined packages are contained in the TLD
standard library, ADA.LIB.

LRM Chapter 11,

Exceptions are implemented by the TLD Ada Compiler System to take advantage of
the normal policy in embedded computer system design to utilize only 50% of
the duty cycle. By executing a small number of instructions in the prologue
of a procedure or block containing an exception handler then at the occurrence
of an exception, a branch may be taken directly to a handler rather than
perrorming the time consuming code of unwinding procedure calls and stack
frames. The philosophy taken is that an exception signals an exceptional
condition, perhaps a serious one involving recovery or reconfiguration, and
that quick response in this situation is more important and worth the tradeoff
in a real time environment.

LEH Chanter 12.

A single generic instance is generated for a generic body. Generic
specifications and bodies need not be compiled together nor need a body be
compiled prior to the compilation of an instantiation. Because of the single
expansion, this implementation of generics tend to be more favorable on the
1750A because of the usual space savings achieved. To achieve this tradeofr,
the instantiations must by nature be more general and are, therefore, somewhat
less efficient timewise.

LRM Chanter 11.

Representation clause support and restrictions are defined above.

A comprehensive MachineCode package is provided and supported.

Unchecked_Deallocation and UncheckedConversion are supported.

The implementation dependent attributes are all supported except 'Storage-Size

for an access type.

B-8

LEM Chapter 1J4.

File 1/0 operations are not supported for the 1750A. Text_lo and Low-Level,.Io

are supported.

B-9

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIGID1 (1..119 => 'A', 120 => '1')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID2 (1..119 => 'A', 120 => '2')
Identifier the size of the
maximum input line length with
varying last character.

$BIG ID3 (1..80 I 82..120 => 'A', 81 => '3')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGID4 (1..80 I 82..120 => 'A', 81 => ,4,)
Identifier the size of the
maximum input line length with
varying middle character.

$BIG INT LIT (1..117 => '0', 118..120 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-I

TEST PARAMETERS

Name and Meaning Value

$BIGREALLIT (1..115 => '0', 116..120 => "690.0")
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG STRING1 (I..60 => 'A')
A string literal which when
catenated with BIG STRING2
yields the image of BIG ID1.

$BIGSTRING2 ('1..59 => 'A', 60 => '1')
A string literal which when
catenated to the end of
BIG STRING 1 yields the image of
BIGIDI.

$BLANKS (1..100 =>
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 511
A universal integer
literal whose value is
TEXTIO • COUNT ' LAST.

$FIELDLAST 127
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FILENAME WITH BAD CHARS "BAD-CHARS#.%!X"
An external -file name that
either contains invalid
characters or is too long.

$FILENAMEWITHWILDCARDCHAR "WILD-CHAR*. NAM"
An external file name that
either contains a wild card

character or is too long.

$GREATER THAN DURATION 90000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DU.ATION.

C-2

TEST PARAMETERS

Name and Meaning Value

$GREATER THAN DURATIONBASE LAST 131073.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGAL EXTERNAL FILE NAME1 "BADCHAR@. I"
An external file name which
contains invalid characters.

$ ILLEGAL.EXTERNALFILENAME2 "THISFILENAMEWOULDBEP ERFECTLY" &
"LEGALIFITWERENOTSOLONG • SOTHERE"

An external file name which
is too long.

$INTEGERFIRST -32768
A universal integer literal
whose value is INTEGERFIRST.

$INTEGERLAST 32767
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LAST PLUS 1 32768
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESS THANDURATION -900000.0
A universal real literal that
lies between DURATION'BASEFIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESSTHANDURATIONBASEFIRST -131073.0
A universal real literal that is
less than DURATION'BASEFIRST.

$MAX DIGITS 9
Maximum digits supported for
floating-point types.

$MAXINLEN 120
Maximum input line length
permitted by the implementation.

$MAXINT 2147483647
A universal integer literal
whose value is SYSTEM.MAX INT.

$MAX INT PLUS 1 2147483648
A universal integer literal
whose value is SYSTEM.MAXINT+1.

C-3

TEST PARAMETERS

Name and Meaning Value

$MAXLENINTBASEDLITERAL (1..2 => "2:", 3.-118 => '0',119..120 => "11");

A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

$MAXLENREALBASED-LITERAL (1..3 => "16:", 4..116 => '0',
117..120 => "F.E:")

A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAXSTRINGLITERAL (1..2 => "A", 3..118 => 'A',
A string literal of size 119..120 => "A")
MAXINLEN, including the quote
characters.

$MININT -2147483648
A universal integer literal
whose value is SYSTEM.MININT.

$NAME SHORTSHORTINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORTINTEGER,
LONGFLOAT, *or LONGINTEGER.

$NEG BASED INT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

C-4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 27 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) incorrectly follows a
later declaration.

" E28005C: This test requires that "PRAGMA LIST (ON);" not
appear in a listing that has been suspended by a previous
"PRAGMA LIST (OFF);"; the Ada Standard is not clear on this
point, and the matter will be reviewed by the AJPO.

" C34004A: The expression in line 168 yields a value outside
the range of the target type T, but there is no handler for
CONSTRAINTERROR.

" C35502P: The equality operators in lines 62 and 69 should be
inequality operators.

" A35902C: The assignment in line 17 of the nominal upper
bound of a fixed-point type to an object raises
CONSTRAINTERROR, for that value lies outside of the actual
range of the type.

C35904A: The elaboration of the fixed-point subtype on line
28 wrongly raises CONSTRAINTERROR, because its upper bound
exceeds that of the type.

C35904B: The subtype declaration that is expected to raise
CONSTRAINT ERROR when its compatibility is checked against
that of various types passed as actual generic parameters,
may, in fact, raise NUMERIC ERROR or CONSTRAINTERROR for
reasons not anticipated by the test.

D-1

WITHDRAWN TESTS

" C35A03E and C35AO3R: These tests assume that attribute
'MANTISSA returns 0 when applied to a fixed-point type with a
null range, but the Ada Standard does not support this
assumption.

• C37213H: The subtype declaration of SCONS in line 100 is
incorrectly expected to raise an exception when elaborated.

" C37213J: The aggregate in line 451 incorrectly raises
CONSTRAINT-ERROR.

" C37215C, C37215E, C37215G, and C37215H: Various discriminant
constraints are incorrectly expected to be incompatible with
type CONS.

" C38102C: The fixed-point conversion on line 23 wrongly
raises CONSTRAINT ERROR.

" C41402A: The attribute 'STORAGE SIZE is incorrectly applied
to an object of an access type.

" C45332A: The test expects that either an expression in line
52 will raise an exception or else MACHINE OVERFLOWS is
FALSE. However, an implementation may evaluate the
expression correctly using a type with a wider range than the
base type of the operands, and MACHINEOVERFLOWS may still be
TRUE.

" C45614C: The function call of IDENTINT in line 15 uses an
argument of the wrong type.

A74106C, C85018B, C87BO4B, and CC1311B: A bound specified in
a fixed-point subtype declaration lies outside of that
calculated for the base type, raising CONSTRAINT ERROR.
Errors of this sort occur at lines 37 & 59, 142 & 143, 16 &
48, and 252 & 253 of the four tests, respectively.

" BC3105A: Lines 159 through 168 expect error messages, but
these lines are correct Ada.

" AD1A01A: The declaration of subtype SINT3 raises
CONSTRAINTERROR for implementations which select INT'SIZE to
be 16 or greater.

CE2401H: The record aggregates in lines 105 and 117 contain
the wrong values.

CE3208A: This test expects that an attempt to open the
default output file (after it was closed) with mode IN FILE
raises NAME ERROR or USE-ERROR; by Commentary AI-00048,
MODE ERROR should be raised.

D-2

